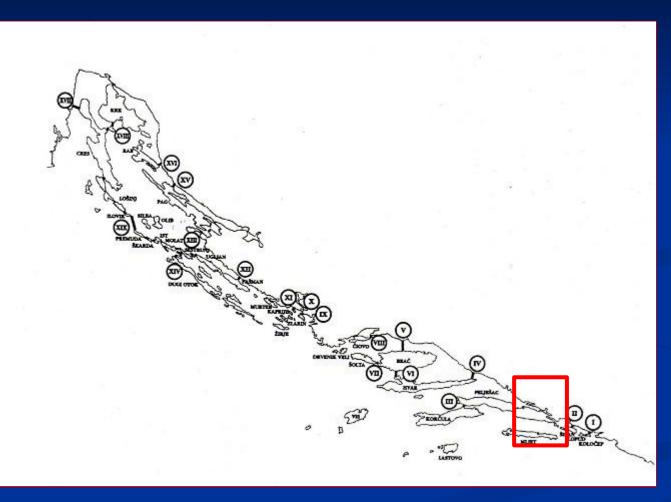
Davorin Kolic , Mohammad Irshad Neuron Zagreb Ltd. IDC Washington Ltd.

Feasibility of Peljesac Bridge Variants

1. CCC Symposium on Concrete Engineering Graz, September 8-9, 2005


Strait crossing on example of the bridge Land – peninsula PELJESAC in the south of Croatia

- 1. About the project
- 2. Project development
- 3. Comparing options
 - Substructure
 - Superstructure
- 4. Feasibility : Economical optimization
- 5. Conclusion

1. About the Project

Location and the size of the project in southern Croatia

Adriatic coast : •>1000 islands •> 1000 km of land coast Less population due to the

emigration in last 150 yrs

About 20 locations where strait crossings could be easily performed.

Connection with motherland as a basis for development of micro- and macro region.

1. About the Project

Location and the size of the project in southern Croatia

Crossings on the Adriatic coast :

- connections land-island or land-land or island – island
- lengths : 750 10 000 m
- max sea depths : 5 70 m
- average sea depths : 3-50 m

•Geology : limestone in banks sedimentary deposits

Agressive surrounding : Wind, earthquake, salt.

1. About the Project

Location and the size of the project in southern Croatia

Land – peninsula Peljesac crossing :

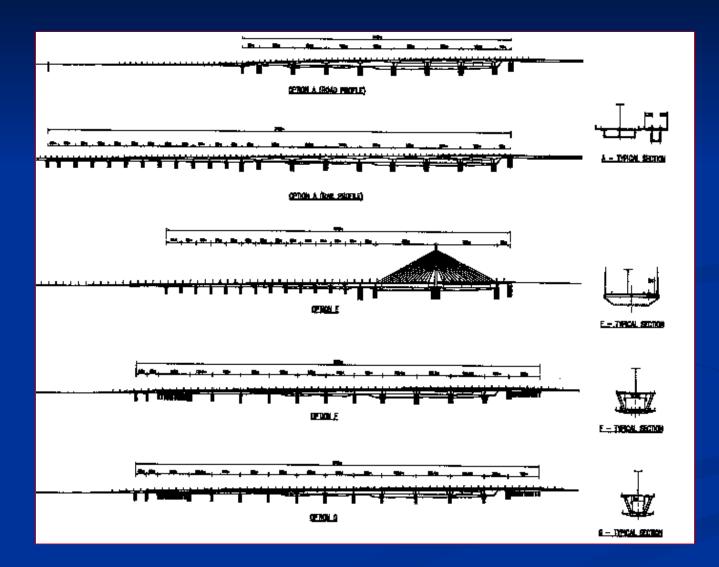
- road crossing
- min 2 lanes
- except in summer period (tourists) not so much traffic is to be expected
- strategic reasons
- basis for development
- public financing (Republic of Croatia)

Location of crossing 2300 m long.

Bridge Rion-Antirion, Greece

Crossing of 2250 m length constructed as cablestayed bridge with 4 pylons, 5 spans, max.560 m Main data :

- * DBOT project (concession)
- * traffic connection
- * Idea >100 years old
- * Project development>20 years long
- * basis for development
- * costs ~13.000 €/m²
- * private financing (bank consortia)
 20 % financing costs


Excerpt from "Hong Kong – Zhuhai – Macau Bridge : Feasibility Study"

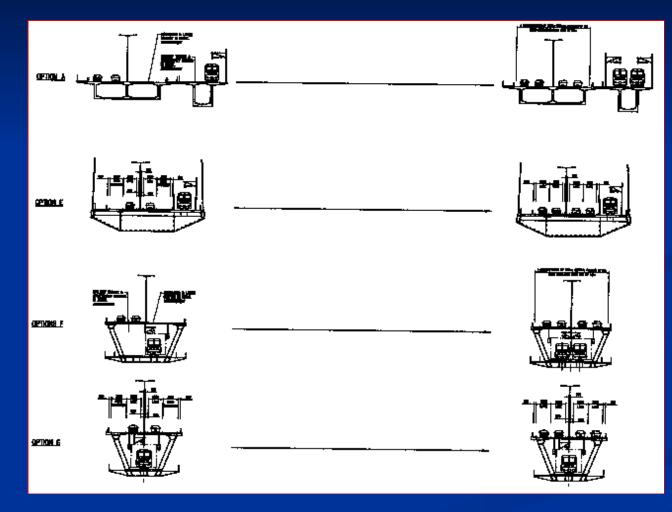
Impacts and influences :

- * Economic : unemployment > construction industry > trade
- * Socio-economic : deeper socio-economic integration of entire area
- * Tourism industry : touristic lines Macau Hong Kong mainland China
- * Logistics : Transport infrastructure + shipping (cargo terminals)
- * Environmental : flora, fauna, heritage, noise, ecology

Bridge over Danube river from Vidin, BG – Calafat, RO

Main data :

- * prelim.phase
- * traffic connection
- * Road + rail
- * basis for development
- * costs : undefined
- * EU financing


 (fight for each €)

 * Internationally

 announced project

Bridge over Danube river from Vidin, BG – Calafat, RO

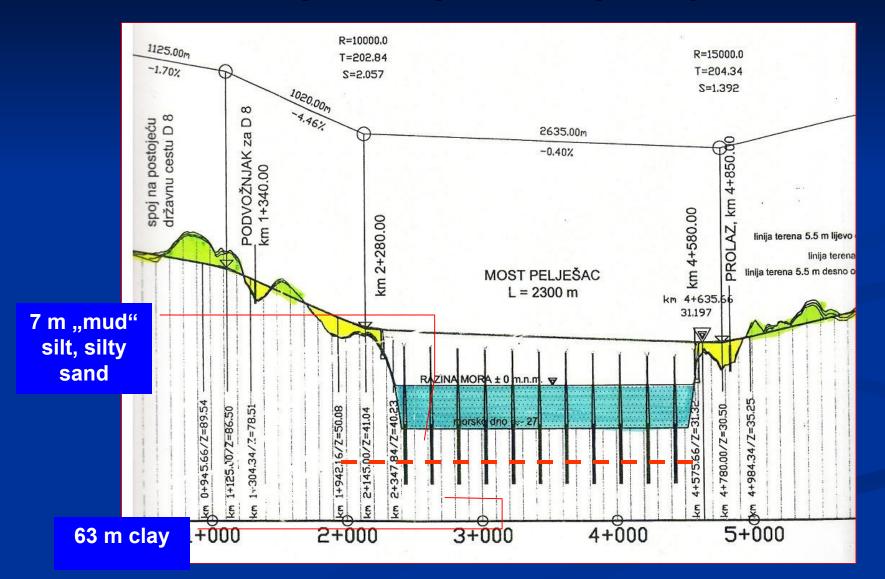
Main data : * 2200 m long * divided in phases * Phase I: should cover not more than existing needs **Investigated**: concrete, steel, composite options 5 remained for final decision

Boundary conditions for strait crossings on the Adriatic coast

- * wind
- •<u>earthquake</u>
- •<u>salt</u>
- prefered structures :

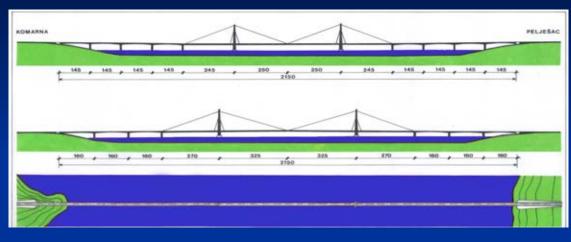
2

21

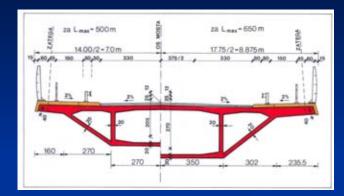

2

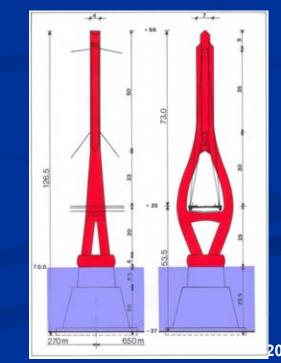
- crossing lengths
- •<u>foundation</u>
- ship traffic
- bura / jugo, along entire cost strong influence, along entire coast intensive influence, with wind + sun no preference, since now mostly arches <u>2000 – 7500 m, max. 10 000 m</u> mostly caissons(since now), 50 m depth low, (in mid-span max 50 m height)

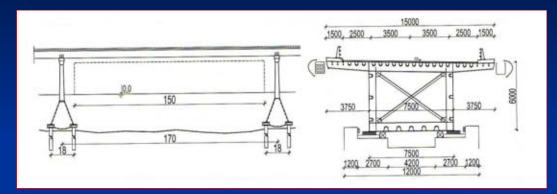
expected costs increases : mostly foundation + maintenance



Longitudinal alignment : bridge to Peljesac




Some options with cable stayed bridges


Early investigations for the crossing with concrete CBS (Kolic, Radic, 2003-04),opt. No."1"

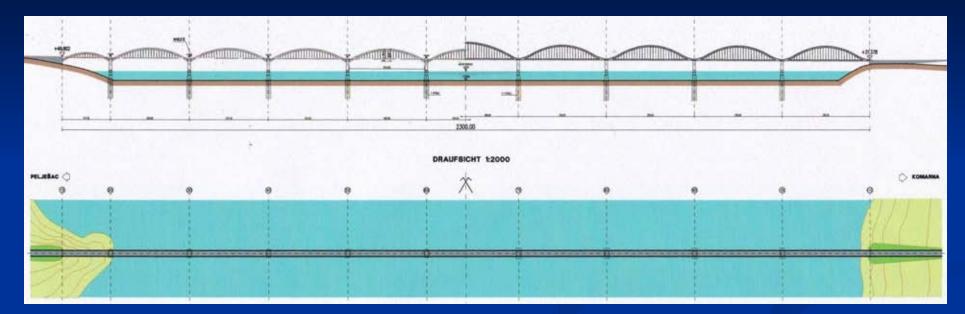
Some options for the crossing to Peljesac

Continuous hollow box girder, • spans 170 m (opt. No."2") Continuous hollow box girder with

the main span with 2 pylons

main span 330 m (opt. No."3")

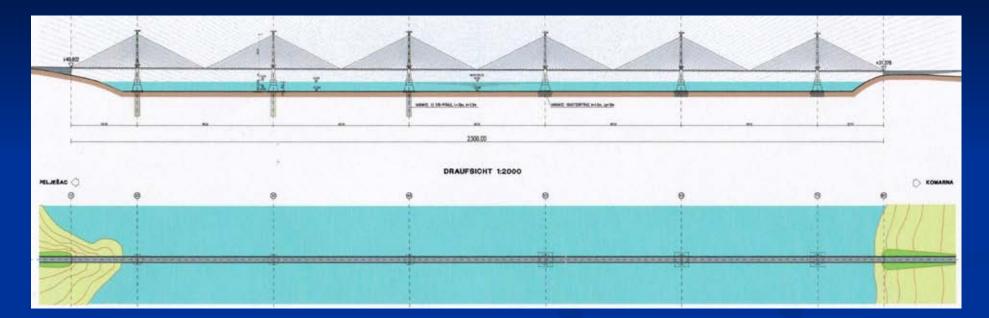
crossing:


Last preffered solutions for the

Unfortunately : options developed with no official competition and public announcement

No. <Nummer>/20

Bridge variants for the crossing to Peljesac



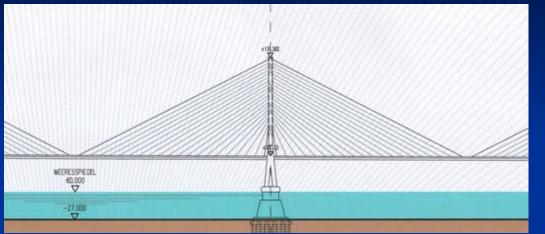
Set of concrete arches Option no. "4", steel deck spans 225 m, 10 columns RC piles 2.5 m diameter

Set of "Langer" girders Option no."5", steel deck Spans 300 and 250 m, 8 columns RC piles 2.5 m diameter

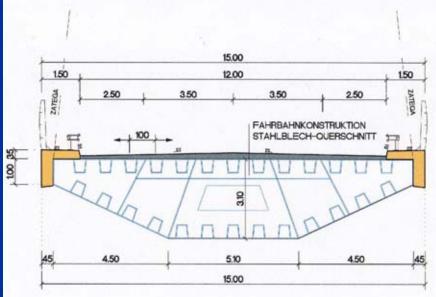
No. <Nummer>/20

Bridge variants for the crossing to Peljesac

CBS with 6 pylons Option no. "6", steel deck spans 385 m, 6 pylons Foundation : RC piles 2.5 m diameter

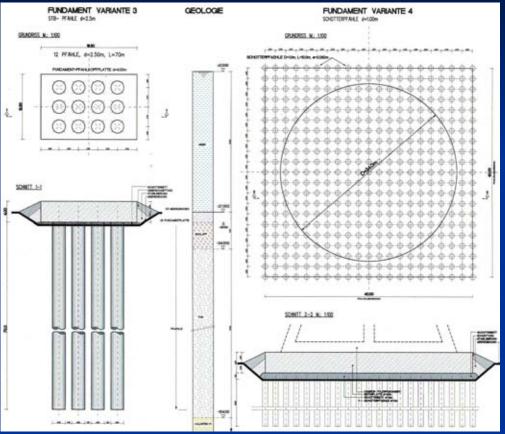

CBS with 6 pylons

Option no."7", steel deck

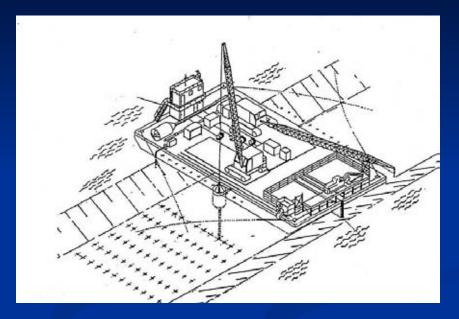

spans 385 m, 6 pylons

"stone columns" of 1.0 m diameter as soil improvement No. <Nummer>/20

Superstructure : Optimization of structural elements and costs


Pylon of CBS variant Design against : salt, earthquake, wind

CBS stiffening girder cross section : steel hollow box


protection against wind

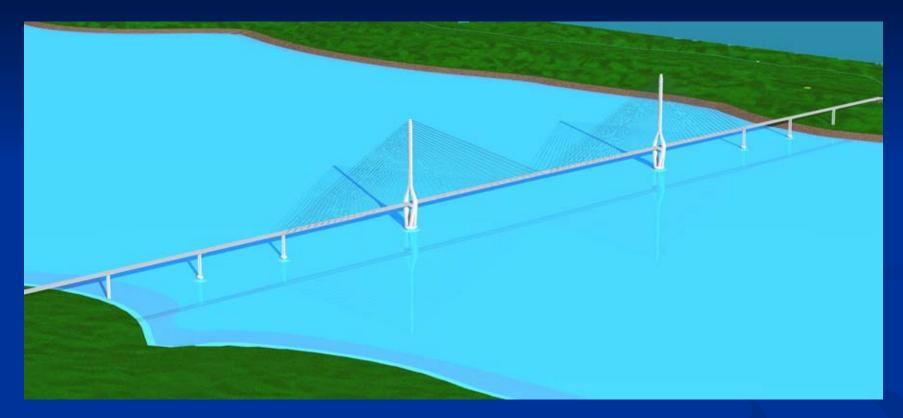
Substructure : Foundations

Foundation options :

RC piles and Stone (gravel) columns, as soil improvement measure

Immersed tunnel Aktion – Preveza, Greece

Stone (gravel) columns :especially applicable in : earthquake zones, liquefiable soils (sand, silt)


Designed for :

Merc: 7,3 deg. In 1000 years (0.4 g) Merc. 7,5 deg. In 500 years (0.32^{Nummer>/20}

Overview of overall estimated project costs

Nr.	Structure type	Max. Span [m]	No.of Found.	Tot. Costs [Mill.€]	Unit Costs [€/m²]	Substr. Costs [%]	Superst r. Costs [%]	Relat. [%]
1	Cable stayed bridge (fig.1) 2 pylons, RC piles	500	8	226.0	6.559	47.0	53.0	110
2	Variant "5", steel box (fig.2) 13 columns	170	13	241.0	6.989	52.0	48.0	118
3	Variant "9", cable-stayed 2 pylons, RC piles	330	12	231.0	6.691	48.0	52.0	113
4	RC Arch bridge, steel deck 10col., RC piles	225	10	700.0	20.312	17.0	83.0	341
5	Langer girder, steel arches 8 columns, RC piles	300	8	227.0	6.589	44.0	56.0	111
6	Cable stayed bridge, 6 pyl., steel box,RC piles	385	6	205.0	5.914	40.0	60.0	100
7	Cable stayed bridge, 6 pyl., found. on "Stone colum."	385	6	209.0	6.054	42.0	58.0	102

Optimization of structural elements and costs

CBS : economically and aesthetically most attractive Stay cables : 24.0 mill. € for 2 pylon option Dispersion of estimated costs for all options due to foundations.

No. <Nummer>/20

5. Conclusion

 <u>Analysis and design based on cost-optimization approach</u> <u>already for very early conceptual design phase</u>

• Estimating overall project costs including : construction, project development, design consultancy etc.

 Competition of solutions and variants : bringing cost reduction potential